Stochastic functional differential equations on manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Functional Differential Equations on Manifolds

In this paper, we study stochastic functional differential equations (sfde’s) whose solutions are constrained to live on a smooth compact Riemannian manifold. We prove the existence and uniqueness of solutions to such sfde’s. We consider examples of geometrical sfde’s and establish the smooth dependence of the solution on finite-dimensional parameters.

متن کامل

Stochastic Differential Equations on Manifolds

In [1] and [2], we studied the problem of the existence and uniqueness of a solution to some general BSDE on manifolds. In these two articles, we assumed some Lipschitz conditions on the drift f(b, x, z). The purpose of this article is to extend the existence and uniqueness results under weaker assumptions, in particular a monotonicity condition in the variable x. This extends well-known result...

متن کامل

Backward Stochastic Differential Equations on Manifolds

The problem of finding a martingale on a manifold with a fixed random terminal value can be solved by considering BSDEs with a generator with quadratic growth. We study here a generalization of these equations and we give uniqueness and existence results in two different frameworks, using differential geometry tools. Applications to PDEs are given, including a certain class of Dirichlet problem...

متن کامل

Backward Stochastic Differential Equations on Manifolds II

In [1], we have studied a generalization of the problem of finding a martingale on a manifold whose terminal value is known. This article completes the results obtained in the first article by providing uniqueness and existence theorems in a general framework (in particular if positive curvatures are allowed), still using differential geometry tools.

متن کامل

Invariant Manifolds for Stochastic Partial Differential Equations

Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2001

ISSN: 0178-8051

DOI: 10.1007/pl00008795